CASSINI
Cassini MIMI Investigation at Fundamental Technologies
Numerical Computation of Energy-Dependent Geometric Factors of E and F Electron Detectors of CASSINI/MIMI/LEMMS
Technical Report by Xiaodong Hong and Thomas P. Armstrong, May 10, 1997
******************************************************************************* * * * PROGRAM I.1 * * * ******************************************************************************* * * * TRAJ4P.FOR * * THIS IS THE MAIN TRAJECTORY PROGRAM. ALL VARIABLES AND PARAMETERS ARE * * DEFINED IN THE COMMENTS FOUND ON PAGE 65 OF SHODHAN'S THESIS. * * * *******************************************************************************
PROGRAM TRAJ1PHI IMPLICIT NONE CHARACTER*72 FNAME,FNAME1,FNAME2,FNAME3,FNAME4 INTEGER I,I1,IHLF,J,MAXE,NCOUNT,NDIM,NHIT,NPHI,NTHETA,NU INTEGER NXK,NYK,NZK,MAXSURF,wscatter,SCATTER,nSCATTER,startnsurf PARAMETER (MAXE=180) REAL*8 C,CON,ERRWT PARAMETER (CON=1.0D0,NDIM=6) REAL*8 STEPHI,STEPTHETA,EK,ENEK,PHIMIN,EVELO, & PHI,QMC,QMCP, & THETA,THETAMAX,THETAMID,V,VX,VY,VZ REAL*8 AUX(16,NDIM),DERY(NDIM),PRMT(5),X0,Y(NDIM),Y0,Z0 REAL CPUTIME,TIMER,ZTIM0 logical firstcheck,secondcheck Integer SEED1,SEED2,SEED3,Seed4 COMMON /SEED1/SEED1,/SEED2/SEED2,/SEED3/SEED3,/Seed4/Seed4
INCLUDE 'PASS5.CMN' COMMON /QMC/QMC COMMON /NCOUNT/NCOUNT,/NU/NU,/NHIT/NHIT C COMMON /FNAME/FNAME COMMON /FNAME4/FNAME4 COMMON /FNAME1/FNAME1 COMMON /FNAME2/FNAME2,FNAME3 common /wscatter/wscatter,/scatter/scatter,/Nscatter/Nscatter common /theta/theta,/phi/phi,/EK/EK,/startnsurf/startnsurf common /firstcheck/firstcheck,/secondcheck/secondcheck data scatter/0/ DATA SEED1/1234441519/ DATA SEED2/278161611/ DATA SEED3/467321899/ Data Seed4/598516711/ DATA C/2.998D0/,QMCP/0.175602D0/ EXTERNAL FCT,OUTP C ZTIM0=TIMER()
write(6,*) 'ENTER THE CHOICE OF MODEL OF THE SCATTER' write(6,*) 'NON SCATTER----------->0' write(6,*) 'SPECULAR SCATTER------>1' write(6,*) 'DIFFUSE SCATTER------->2' read(5,*) wscatter
if (wscatter.eq.2) then write(6,*) 'ENTER NSCATTER' read(5,*) Nscatter end if
CALL GEOM
C OPEN(UNIT=7,FILE='TRAJSH.DAT',ACCESS='SEQUENTIAL',STATUS='NEW')
WRITE(6,*) 'ENTER THE INITIAL COORDINATES OF THE e IN CM/100s' READ(5,*) X0,Y0,Z0
C TO ENTER QUANTITIES FOR PRMT WRITE(6,*) 'ENTER LOWER BOUND ON TIME (t=0)' READ(5,*) PRMT(1) WRITE(6,*) 'ENTER THE UPPER BOUND ON TIME' READ(5,*) PRMT(2) WRITE(6,*) 'ENTER THE TIME STEP' READ(5,*) PRMT(3) WRITE(6,*) 'ENTER THE ERROR BOUND' READ(5,*) PRMT(4)
WRITE(6,*) 'ENTER THE ENERGY OF THE PARTICLE IN MEV' READ(5,*) EK
ENEK=IDINT(1000.0D0*EK) NXK=IDINT(10000.0D0*dabs(X0)) NYK=IDINT(10000.0D0*Y0) NZK=IDINT(10000.0D0*Z0)
ENCODE (17,60,FNAME1)NXK,NYK,NZK,IDINT(ENEK) OPEN(UNIT=8,STATUS='NEW',ACCESS='SEQUENTIAL',FILE=FNAME1)
ENCODE (19,110,FNAME2)NXK,NYK,NZK,IDINT(ENEK) OPEN(UNIT=1,STATUS='NEW',ACCESS='SEQUENTIAL',FILE=FNAME2)
ENCODE (20,120,FNAME3)NXK,NYK,NZK,IDINT(ENEK) OPEN(UNIT=2,STATUS='NEW',ACCESS='SEQUENTIAL',FILE=FNAME3)
ENCODE (23,125,FNAME4)NXK,NYK,NZK,IDINT(ENEK) OPEN(UNIT=3,STATUS='NEW',ACCESS='SEQUENTIAL',FILE=FNAME4)
V = EVELO(EK) !COMPUTE V FOR THIS ENERGY OF e
QMC = QMCP*DSQRT(1 - (V/C)**2)
WRITE (6,*) 'ENTER MID. THETA,THETAMAX,DEL THETA' READ (5,*) THETAMID,THETAMAX,STEPTHETA
WRITE (6,*) 'ENTER MIN. PHI,NO. OF STEPS,DEL PHI' READ (5,*) PHIMIN,NPHI,STEPHI
WRITE (8,70) EK,V WRITE (8,80) THETAMID,THETAMAX,STEPTHETA WRITE (8,90) PHIMIN,NPHI,STEPHI WRITE (8,20) PRMT(1),PRMT(2),PRMT(3),PRMT(4) WRITE (8,*) C WRITE (8,95) X0,Y0,Z0
WRITE (1,130) WRITE (2,140) WRITE (3,150)
C TO CONVERT FROM INCHES TO CMS. C X0 = X0 * CON C Y0 = Y0 * CON C Z0 = Z0 * CON
write(6,*)X0,Y0,Z0 WRITE (8,100) X0,Y0,Z0 WRITE (8,*)
NPAS=0
DO I=1,NPHI PHI=PHIMIN + DFLOAT(I-1)*STEPHI DO J=-1,1,2 IF (J .EQ. -1) THEN THETA=THETAMID ELSE THETA=THETAMID + DFLOAT(J)*STEPTHETA END IF NHIT=2 DO WHILE (NHIT .EQ. 2 .AND. THETA .LT. THETAMAX)
C ENCODE (23,50,FNAME)NXK,NYK,NZK,IDINT(ENEK), C & IDINT(THETA),IDINT(PHI) C OPEN(UNIT=4,STATUS='NEW',ACCESS='SEQUENTIAL',FILE=FNAME)
NCOUNT = 0 NU = 1
C WRITE(7,05) I C WRITE(7,10) EK,V,THETA(J),PHI(I) C WRITE(7,20) PRMT(1),PRMT(2),PRMT(3),PRMT(4) C WRITE(7,30) C WRITE(6,*) J
C TO COMPUTE THE VELOCITY PROJECTIONS Vx,Vy,Vz CALL VELOPROJ(V,VX,VY,VZ,THETA,PHI)
C WRITE(6,*) ' THETA ',THETA,' PHI ',PHI
C TO INITIALISE THE INITIAL VALUES Y(1) = X0 Y(2) = Y0 Y(3) = Z0 Y(4) = VX Y(5) = VY Y(6) = VZ
ERRWT = 1.0D0/6.0D0 DO I1=1,NDIM DERY(I1) = ERRWT END DO startnsurf=1 firstcheck=.false. secondcheck=.false. C write(6,*)' THETA ',THETA,' PHI ',PHI CALL DHPCG(PRMT,Y,DERY,NDIM,IHLF,FCT,OUTP,AUX)
C IF (NHIT .EQ. 2) THEN C PAS(NPAS,1) = THETA C PAS(NPAS,2) = PHI C END IF
C WRITE(6,*) C WRITE(6,*) ' IHLF NO. OF BISECTIONS OF STEP: ',IHLF C WRITE(6,*) 'TOTAL NO. OF POINTS IN THE TRAJECTORY: ',NU-1 IF ((THETA.LT.Thetamax).AND.(THETA.GT.60)) NHIT = 2 THETA = THETA+DFLOAT(J)*STEPTHETA END DO END DO END DO
WRITE (1,*) NPAS WRITE (2,*) NPAS
CALL PASSOUTPUT
WRITE(6,*) 'NPAS:',NPAS C CPUTIME=TIMER()-ZTIM0 WRITE(6,*) 'C.P.U. TIME: ',CPUTIME WRITE(1,40) WRITE(2,40)
05 FORMAT(1X,I3) 10 FORMAT(1X,'ENERGY(in mev)',D10.3,2X,'VELOCITY(*10+10)',F12.5,2X, & 'THETA(in deg.)',F10.3,2X,'PHI(in deg.)',F10.3) 20 FORMAT(1X,'INITIAL TIME(*10-08)',F12.6,2X,'FINAL TIME(*10-08)', & F12.6,2X,'INITIAL STEP(*10-08)',F14.8,1X,'ERROR BOUND',F19.12) 30 FORMAT(4X,'T(-08)',10X,'X(+02)',10X,'Y(+02)',10X,'Z(+02)',10X, & 'VX(+10)',10X,'VY(+10)',10X,'VZ(+10)',10X,'(V+10)') 40 FORMAT(X,'---*---*---*--- END OF ENERGY ---*---*---*---') 50 FORMAT (I3,I3,I4,'.E',I5,I3,I3) 60 FORMAT (I3,I3,I4,'.E',I5) 70 FORMAT (1X,'ENERGY(in mev)',D10.3,2X,'VELOCITY(*10+10)',F12.5) 80 FORMAT (1X,'MIDDLE THETA(in deg.)',F10.2,2X,'MAX.THETA', & F10.2,2X,'DEL THETA',F10.2) 90 FORMAT (1X,'INITIAL PHI (in deg.)',F10.2,2X,'NO. OF STEPS', & I5,2X,'DEL PHI ',F10.2) 95 FORMAT (1X,'STARTING POSITION(in in.)',2X,'X(+02)',D14.7, & 2X,'Y(+02)',D14.7,2X,'Z(+02)',D14.7) 100 FORMAT (1X,'STARTING POSITION(in cm.)',2X,'X(+02)',D14.7, & 2X,'Y(+02)',D14.7,2X,'Z(+02)',D14.7) 110 FORMAT (I3,I3,I4,'.E',I5,'IN') 120 FORMAT (I3,I3,I4,'.E',I5,'OUT') 125 FORMAT (I3,I3,I4,'.E',I5,'OUTVEL') 130 FORMAT(1X,'POLAR & AZIMUTHAL ANGLES AT THE DETECTOR') 140 FORMAT(1X,'POLAR & AZIMUTHAL ANGLES AT THE APERTURE') 150 FORMAT(1X,'POLAR & AZIMUTHAL ANGLES AT THE APERTURE FROM VEL.') CLOSE(1) CLOSE(2) CLOSE(3) close(8) stop END
Return to Appendix D
Return to Technical Report Table of Contents
Return to Cassini
MIMI table of contents page.
Return to Fundamental
Technologies Home Page.
Updated 8/8/19, Cameron Crane
QUICK FACTS
Manufacturer: The Cassini spacecraft
was manufactured by NASA's Jet Propulsion Laboratory,
and the Huygens Probe was manufactured by Thales Alenia
Space.
Mission Duration: The Cassini-Huygens mission launched on October 15 1997, and ended on September 15 2017.
Destination: Cassini's destination was Saturn and its moons. The destination of the Huygens Probe's was Saturn's moon Titan.
Orbit: Cassini orbited Saturn for 13 years before diving between its rings and colliding with the planet on September 15th, 2017.
Mission Duration: The Cassini-Huygens mission launched on October 15 1997, and ended on September 15 2017.
Destination: Cassini's destination was Saturn and its moons. The destination of the Huygens Probe's was Saturn's moon Titan.
Orbit: Cassini orbited Saturn for 13 years before diving between its rings and colliding with the planet on September 15th, 2017.